Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vector Borne Zoonotic Dis ; 24(4): 226-236, 2024 04.
Article in English | MEDLINE | ID: mdl-38436222

ABSTRACT

Introduction: Lyme disease (LD) affects ∼476,000 people each year in the United States. Symptoms are variable and include rash and flu-like symptoms. Reasons for the wide variation in disease outcomes are unknown. Powassan virus (POWV) is a tick-borne flavivirus that causes disease ranging from asymptomatic infection to encephalitis, neurologic damage, and death. POWV and LD geographic case distributions overlap, with Ixodes species ticks as the common vectors. Clinical ramifications of coinfection or sequential infection are unknown. Objectives: This study's primary objective was to determine the prevalence of POWV-reactive antibodies in sera samples collected from previously studied cohorts of individuals with self-reported LD history residing in the Northeastern United States. As a secondary objective, we studied clinical differences between people with self-reported LD history and low versus high POWV antibody levels. Methods: We used an enzyme-linked immunosorbent assay (ELISA) to quantify IgG directed at the POWV envelope (E) protein domain III in 538 samples from individuals with self-reported LD history and 16 community controls. The samples were also tested with an ELISA assay to quantify IgG directed at the POWV NS1 protein. Results: The percentage of individuals with LD history and possible evidence of POWV exposure varied depending on the assay utilized. We found no significant difference in clinical symptoms between those with low or high POWV IgG levels in the in-house assay. Congruence of the EDIII and NS1 assays was low with only 12% of those positive in the in-house EDIII ELISA testing positive in the POWV NS1 ELISA. Conclusions: The results highlight the difficulty in flavivirus diagnostic testing, particularly in the retrospective detection of flavivirus exposure. The findings suggest that a prospective study with symptomatic patients using approved clinical testing is necessary to address the incidence and clinical implications of LD and POWV co-infection or sequential infection.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Ixodes , Lyme Disease , Animals , Humans , United States/epidemiology , Prevalence , Retrospective Studies , Prospective Studies , Encephalitis, Tick-Borne/veterinary , Lyme Disease/epidemiology , Lyme Disease/veterinary , New England/epidemiology , Antibodies, Viral , Immunoglobulin G
2.
J Exp Med ; 218(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-33831141

ABSTRACT

Tick-borne encephalitis virus (TBEV) is an emerging human pathogen that causes potentially fatal disease with no specific treatment. Mouse monoclonal antibodies are protective against TBEV, but little is known about the human antibody response to infection. Here, we report on the human neutralizing antibody response to TBEV in a cohort of infected and vaccinated individuals. Expanded clones of memory B cells expressed closely related anti-envelope domain III (EDIII) antibodies in both groups of volunteers. However, the most potent neutralizing antibodies, with IC50s below 1 ng/ml, were found only in individuals who recovered from natural infection. These antibodies also neutralized other tick-borne flaviviruses, including Langat, louping ill, Omsk hemorrhagic fever, Kyasanur forest disease, and Powassan viruses. Structural analysis revealed a conserved epitope near the lateral ridge of EDIII adjoining the EDI-EDIII hinge region. Prophylactic or early therapeutic antibody administration was effective at low doses in mice that were lethally infected with TBEV.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis, Tick-Borne/immunology , Immunoglobulin G/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/genetics , Antibodies, Viral/administration & dosage , Antibodies, Viral/genetics , Cells, Cultured , Cohort Studies , Cross Reactions/immunology , Encephalitis Viruses, Tick-Borne/drug effects , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/prevention & control , Encephalitis, Tick-Borne/virology , Epitopes/immunology , Female , Humans , Immunoglobulin G/administration & dosage , Mice, Inbred BALB C , Sequence Homology, Amino Acid , Survival Analysis , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
3.
Proc Natl Acad Sci U S A ; 117(14): 7981-7989, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32209664

ABSTRACT

Human infection by Zika virus (ZIKV) during pregnancy can lead to vertical transmission and fetal aberrations, including microcephaly. Prophylactic administration of antibodies can diminish or prevent ZIKV infection in animal models, but whether passive immunization can protect nonhuman primates and their fetuses during pregnancy has not been determined. Z004 and Z021 are neutralizing monoclonal antibodies to domain III of the envelope (EDIII) of ZIKV. Together the two antibodies protect nonpregnant macaques against infection even after Fc modifications to prevent antibody-dependent enhancement (ADE) in vitro and extend their half-lives. Here we report on prophylactic coadministration of the Fc-modified antibodies to pregnant rhesus macaques challenged three times with ZIKV during first and second trimester. The two antibodies did not entirely eliminate maternal viremia but limited vertical transmission, protecting the fetus from neurologic damage. Thus, maternal passive immunization with two antibodies to EDIII can shield primate fetuses from the harmful effects of ZIKV.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Infectious Disease Transmission, Vertical/prevention & control , Pregnancy Complications, Infectious/prevention & control , Zika Virus Infection/prevention & control , Zika Virus/immunology , Animals , Animals, Newborn , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Disease Models, Animal , Drug Therapy, Combination , Female , Fetus/immunology , Fetus/virology , HEK293 Cells , Humans , Immunoglobulin Fc Fragments/administration & dosage , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/administration & dosage , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/virology , Protein Engineering , RNA, Viral/isolation & purification , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Zika Virus/genetics , Zika Virus/pathogenicity , Zika Virus Infection/immunology , Zika Virus Infection/transmission , Zika Virus Infection/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...